YYVYVVYVYVYYYVYVYVYVYY

Key Concepts

Reusability

Inheritance

Single inheritance

Multiple inheritance
Multilevel inheritance
Hybrid inheritance
Hierarchical inheritance
Defining a derived class
Inheritiing private members
Virtual base class

Direct base class

Indirect base class

Abstract class

Defining derived class constructors

Nesting of classes

| 8.1 Introduction

Reusability is yet another important
feature of OOP. It is always nice if we could
reuse something that already exists rather
than trying to create the same all over
again. It would not only save time and
money but also reduce frustration and
increase reliability. For instance, the reuse
of a class that has already been tested,
debugged and used many times can save
us the effort of developing and testing the
same again.

Fortunately, C++ strongly supports the
concept of reusability. The C++ classes can
be reused in several ways. Once a class has
been written and tested, it can be adapted
by other programmers to suit their
requirements. This is basically done by
creating new classes, reusing the properties
of the existing ones. The mechanism of
deriving a new class from an old one is
called inheritance (or derivation). The old
class is referred to as the base class and
the new one is called the derived class or
subclass.

202e¢ Object-Oriented Programming with C++

The derived class inherits some or all of the traits from the base class. A class can also
inherit properties from more than one class or from more than one level. A derived class
with only one base class, is called single inheritance and one with several base classes is
called multiple inheritance. On the other hand, the traits of one class may be inherited by
more than one class. This process is known as hierarchical inheritance. The mechanism of
deriving a class from another ‘derived class’ is known as multilevel inheritance. Figure 8.1
shows various forms of inheritance that could be used for writing extensible programs. The
direction of arrow indicates the direction of inheritance. (Some authors show the arrow in
opposite direction meaning “inherited from”.)

KN
Lo]

(a) Single inheritance

(b) Multipte inheritance (c) Hierarchical inheritance
A A
|

[e] [e] Lo]

K3 Y

(d) Muitilevel inheritance (e) Hybrid inheritance

Fi81 ¢$Forms of,?ﬂhéritance i

I8.2 Defining Derived Classes

A derived class can be defined by specifying its relationship with the base class in addition
to its own details. The general form of defining a derived class is:

Inheritance: Extending Classes —0203

class derived-class-name : visibility-mode base-class-name
{

..... //

..... // members of derived class

..... //
}s

The colon indicates that the derived-class-name is derived from the base-class-name. The
visibility-mode is optional and, if present, may be either private or public. The default
visibility-mode is private. Visibility mode specifies whether the features of the base class
are privately derived or publicly derived.

Examples:

class ABC: private XYZ // private derivation

{
}s

members of ABC

class ABC: public XYZ // public derivation
{

members of ABC

}s

class ABC: XYZ // private derivation by default
{
members of ABC

s

When a base class is privately inherited by a derived class, ‘public members’ of the base
class become ‘private members’ of the derived class and therefore the public members of the
base class can only be accessed by the member functions of the derived class. They are
inaccessible to the objects of the derived class. Remember, a public member of a class can be
accessed by its own objects using the dot operator. The result is that no member of the base
class is accessible to the objects of the derived class.

On the other hand, when the base class is publicly inherited, ‘public members’ of the
base class become ‘public members’ of the derived class and therefore they are accessible to
the objects of the derived class. In both the cases, the private members are not inherited and
therefore, the private members of a base class will never become the members of its derived
class.

In inheritance, some of the base class data elements and member functions are 'inherited'
into the derived class. We can add our own data and member functions and thus extend the

204 & Object-Oriented Programming with C++

functionality of the base class. Inheritance, when used to modify and extend the capabilities
of the existing ciasses, becomes a very powerful tool for incremental program development.

|8.3 Single Inheritance

Let us consider a simple example to illustrate inheritance. Program 8.1 shows a base class
B and a derived class D. The class B contains one private data member, one public data
member, and three public member functions. The class D contains one private data member
and two public member functions.

4

#include <iostream>

using namespace std;

class B
{
int a; // private; not inheritable
public:
int b; // public; ready for inheritance

void get_ab(};
int get a(void);
void show_a(void);

}s

class D : public B // public derivation
{
int c;
public:
void mul(void);
void display(void);
}s

void B :: get ab(void)
{

}
int B :: get_a()
{

}
void B :: show_a()

{

a =5 b=10;

return a;

(Contd)

Inheritance: Extending Classes © 205

cout << "a = " << a << "\n";
}
void D :: mul()
{

}
void D :: display()
{

c=b *get a();

i

cout << "a = " << get_a() << "\n";
COUt << Ilb = it << b << il\nll;
cout << e = " oc< ¢ << u\n\nu;

int main()

{
D d;

d.get_ab();
d.mul();
d.show_a();
d.display();

d.b = 20;
d.mul();
d.display();

return 0; .

PROGRAM 8.1

Given below is the output of Program 8.1:

5
5
10
50

[@ IR =2 eV =]
nou

fl

a=>5
20
100

C

The class D is a public derivation of the base class B. Therefore, D inherits all the public
members of B and retains their visibility. Thus a public member of the base class B is also
a public member of the derived class D. The private members of B cannot be inherited

206 0- Object-Oriented Programming with C++

by D. The class D, in effect, will have more members than what it contains at the time of
declaration as shown in Fig. 8.2.

Class D

Private Section

Public Section

display()

Fig. 8.2 <& Adding more members to a class (by public derivation)

| S——

The program illustrates that the objects of class D have access to all the public members
of B. Let us have a look at the functions show_a() and mul():

void show_a()

{
cout << "a = " << a << u\nu;
} .
void mul()
{
¢ =b*get_a(); // c=b*a

}

Although the data member a is private in B and cannot be inherited, objects of D are able
to access it through an inherited member function of B.

Let us now consider the case of private derivation.

Inheritance: Extending Classes ® 207

class B

{
int a;
public:
int b;
void get ab();
void get a();
void show a();

}s

class D : private B // private derivation
{
int ¢;
pubTlic:
void mul();
void display();
}s

The membership of the derived class D is shown in Fig. 8.3. In private derivation, the
public members of the base class become private members of the derived class. Therefore,
the objects of D can not have direct access to the public member functions of B.

Class D

Private Section

i

Inherited

B

208 @ Object-Oriented Programming with C++

The statements such as

d.get ab(); // get_ab() is private
d.get a(); // so also get_a()
d.show _a(); // and show a()

will not work. However, these functions can be used inside mul() and display() like the
normal functions as shown below:

void mul()
{

get ab();

¢ =b * get a();
}

void display()

{
show_a(); // outputs value of 'a’
cout << ub - W g b << n\”u
<< IIC - " << C << ll\n\nll;

}

Program 8.2 incorporates these modifications for private derivation. Please compare this
with Program 8.1.

#include <iostream>

using namespace std;

class B
{
int a; // private; not inheritable
public:
int b; // public; ready for inheritance

void get_ab();
int get a(void);
void show_a(void);

s

class D : private B // private derivation
{

int c;
(Contd)

Inheritance: Extending Classes 0209

public:
void mul (void);
void display(void);

s
J[-=mm oo
void B :: get_ab(void)
{
cout << "Enter values for a and b:";
cin > a > b;
}
int B :: get_a()
{
return a;
}
void B :: show a()
{
cout << Ila - i << a << Il\nll;
}
void D :: mul()
{
get _ab();
c=b*get a(); _// 'a' cannot be used directly
}
void D :: display()
{
show_a(); // outputs value of ‘a’
COUt << ub " e b << "\ﬂ" i

<< “C n << C << I!\n\nll;

int main()
D d;
// d.get_ab(); WON'T WORK
d.mul();

// d.show a(); WON'T WORK
d.display();

(Contd)

210@ Object-Oriented Programming with C++

// d.b = 20; WON'T WORK; b has become private
d.mul();
d.display();

return 0;

PROGRAM 8.2

The output of Program 8.2 would be:

Enter values for a and b:5 10

a=>5
b =10
c =50
Enter values for a and b:12 20
a =12
b =20
c = 240

Suppose a base class and a derived class define a function of the same name. What will
happen when a derived class object invokes the function?. In such cases, the derived class
function supersedes the base class definition. The base class function. will be called only if
the derived class does not redefine the function.

|8.4 Making a Private Member Inheritable

We have just seen how to increase the capabilities of an existing class without modifying it.
We have also seen that a private member of a base class cannot be inherited and therefore
it is not available for the derived class directly. What do we do if the private data needs to
be inherited by a derived class? This can be accomplished by modifying the visibility limit of
the private member by making it public. This would make it accessible to all the other
functions of the program, thus taking away the advantage of data hiding.

C++ provides a third visibility modifier, protected, which serve a limited purpose in
inheritance. A member declared as protected is accessible by the member functions within
its class and any class immediately derived from it. It cannot be accessed by the functions
outside these two classes. A class can now use all the three visibility modes as illustrated
below:

class alpha
{
private: // optional

..... // visible to member functions

Inheritance: Extending Classes 0211

..... // within its class
protected:
..... // visible to member functions
..... // of its own and derived class
public
..... // visible to all functions
..... // in the program

When a protected member is inherited in public mode, it becomes protected in the
derived class too and therefore is accessible by the member functions of the derived class. It
is also ready for further inheritance. A protected member, inherited in the private mode
derivation, becomes private in the derived class. Although it is available to the member
functions of the derived class, it is not available for further inheritance (since private
members cannot be inherited). Figure 8.4 is the pictorial representation for the two levels
of derivation.

Class B
Not inheritable X «-———— | h'Pj"Vfﬁe~~— - X Not inheritable
= - =4 Protected | o e s ~~--—-¢i‘
S i
| Public
L.M.‘(__ e |
class D1 : public E class D2 : private B :
| Prvate | Private o
~ | Protected \‘ Protected |
Public *-*wwv*——J Public

|
i I
{ i
| |

; i class X : public D1 : protected D2

| |)

Private

e Protected || {

i Public

Fig. 8.4 < Effect of inheritance on the visibility of members ?

- o D — . pra.

2120 Object-Oriented Programming with C++

The keywords private, protected, and public may appear in any order and any number
of times in the declaration of a class. For example,

class beta

protected:

.....
.....

is a valid class definition.
However, the normal practice is to use them as follows:

class beta

..... // private by default

.....
.....

.....

It is also possible to inherit a base class in protected mode (known as protected derivation).
In protected derivation, both the public and protected members of the base class become
protected members of the derived class. Table 8.1 summarizes how the visibility of base
class members undergoes modifications in all the three types of derivation.

Now let us review the access control to the private and protected members of a class.
What are the various functions that can have access to these members? They could be:

1. A function that is a friend of the class.
2. A member function of a class that is a friend of the class.
3. A member function of a derived class.

While the friend functions and the member functions of a friend class can have direct
access to both the private and protected data, the member functions of a derived class can
directly access only the protected data. However, they can access the private data thicagh
the member functions of the base class. Figure 8.5 illustrates how the access control

Inheritance: Extending Classes

9213

mechanism works in various situations. A simplified view of access control to the members
of a class is shown in Fig. 8.6.

Table 8.1 Visibiiity of inherited members

Base class visibility

Derived class visibility

Public Private Protected
derivation derivation derivation
Private —— Not inherited Not inherited Not inherited
Protected — Protected Private Protected
Public Public Private Protected
class X
friend class Y:
class Y
.]
rivate L
— 1
e ‘—Edata E—~—-»~~~——~{ N
; J X1 Fo- } - fy
1 P I ~o e -
; //’ \\\ ><
| - e S~
! L protected] Y
» fxo data |=-Po-------] fvs
| [A: — — T

7 i function 1

Pl friend of X

|

I

!

I

! i

i i

] i

| l

| !

I — |

i i | \

t ! \ \
i 4 \ \
i f21 /// \ \
| - . \
1

(

!

1

|

1

fz,

inherited from X

Fig. 8.5 <« Access mechanism in classes E

|8.5 Multilevel Inheritance

It is not uncommon that a class is derived from another derived class as shown in Fig. 8.7.
The class A serves as a base class for the derived class B, which in turn serves as a base
class for the derived class C. The class B is known as intermediate base class since it provides
a link for the inheritance between A and C. The chain ABC is known as inheritance path.

2140 Object-Oriented Programming with C++

All users

derived class ;D own member functions
/

member) and friendly functions
functions N~ Vi 7 and classes
AN /
N rotected
N proteeee
—~—

public /,/

Fig. 8.6 <« A simple view of access control to the members of a class

A R B AR AP e - PRVR—— TS ey B A & o B e £ bR

Base class ! A Grandfather

st

Intermediate B Father
base class

: ¢

3 Derived class C Child

| Fig. 8.7 & Multilevel inheritance |

A derived class with multilevel inheritance is declared as follows:

class A{..... }s // Base class
class B: public A {..... }s // B derived from A
class C: public B {..... }s // C derived from B

This process can be extended to any number of levels.

Let us consider a simple example. Assume that the test results of a batch of students are
stored in three different classes. Class student stores the roll-number, class test stores the
marks obtained in two subjects and class result contains the total marks obtained in the
test. The class result can inherit the details of the marks obtained in the test and the roll-
number of students through multilevel inheritance. Example:

Inheritance: Extending Classes 9215

class student
{
protected:
int roll_number;
public:
void get number(int);
void put_number(void);
}s

void student :: get number(int a)

{ roll _number = a;

ioid student :: put_number()

{ cout << "Roll Number: " << roll_number << "\n";

}

class test : public student // First level derivation
{ protected:

float subl;
float sub2;
public:
void get marks(float, float);
void put_marks(void);
}s
void test :: get marks(float x, float y)
{

subl = x;
sub2 = y;
}
void test :: put marks()
{
cout << "Marks in SUB1 = " << subl << "\n";
cout << "Marks in SUB2 = " << sub2 << "\n";
}
class result : public test // Second level derivation
{
float total; // private by default
public:

void display(void);
}s

The class result, after inheritance from ‘grandfather’ through ‘father’, would contain the
following members:

2160—

private:
float total;
protected:
int roll_number;
float subl;
float sub2;
public:
void get number(int);
void put_number{void);
void get marks(float, float);
void put:marks(void);
void display(void);

Object-Oriented Programming with C++

// own member

// inherited from student via test
// inherited from test
// inherited from test

// from student via test
// from student vig test
// from test

// from test

// own member

The inherited functions put_number() and put_marks() can be used in the definition

of display() function:

void result

{

:: display(void)

total subl + sub2;
put_number();

put marks();

cout << "Total = " << tota

J

Here is a simple main() program:

int main()

{
result studentl;
studentl.get number(111);
studentl.get marks(75.0, 5
studentl.display();

return 0;

}

] << ll\nll;

// studentl created

9.5);

This will display the result of studentl. The complete program is shown in Program 8.3.

MULTILEVEL INKERITANGE
#include <iostream>
using namespace std;

class studént

(Contd)

Inheritance: Extending Classes 0217

{
protected:
int roll_numher;
public:
void get_number(int);
void put_number(void);
ks
void student :: get number(int a)
{ .
roll_number = a;
}
void student :: put_number()
{
cout << "Roll Number: " << roll_number =< "\n";
}
class test : public student // First level derivation
{
protected:

float sublj
float sub?;
public:
void get marks(float, float);
void put_marks(void);

}s
void test :: get marks(float x, float y)
{ ,
subl = x;
sub2 = y;
}
void test :: put_marks()
{
cout << "Marks in SUB1 = " << subl << "\n";
cout << "Marks in SUBZ = " << sub2 << "\n";
}
class result : public test // Second level derivation
{
float total; // private by default
public:

void display(void);
}s

void result :: display{void)

(Contd)

218e@ Object-Oriented Programming with C++

total = subl + sub?2;
put_number();
put_marks();

cout << "Total = " << total << "\n";
}
int main()
result studentl: // studentl created

studentl.get number(111);
studentl.get marks(75.0, 59.5);

studentl.display();

return 0;

PROGRAM 8.3

Program 8.3 displays the following output:

Ro11l Number: 111
Marks in SUB1
Marks in SUB2
Total = 134.5

75
59.5

|8.6 Multiple Inheritance

A class can inherit the attributes of two or more classes as shown in Fig. 8.8. This is known
as multiple inheritance. Multiple inheritance allows us to combine the features of several
existing classes as a starting point for defining new classes. It is like a child inheriting the
physical features of one parent and the intelligence of another.

B-1 B2 | - B-n

- Fig. 8.8 & Multiple inheritance 1?

Inheritance: Extending Classes 0219

The syntax of a derived class with multiple base classes is as follows:

class D: visibility B-1, visibility B-2 ...

.....

where, visibility muy be either public or private. The base classes are separated by commas.

Example:

cltass P : public M, public N

{
public:
void display(void);
}s

Classes M and N have been specified as follows:

class M
{
protected:
int m;
public:
void get m(int);
bs
void M :: get m(int x)
{

}
class N
{
protected:
int n;
public:
void get n(int);

m = X3

}s
void N :: get n(int y)
{

2200 Object-Oriented Programming with C++

}

The derived class P, as declared above, would, in effect, contain all the members of M and
N in addition to its own members as shown below:

class P
{
protected:
int m; // from M
int n; // from N
public:
void get m(int); // from M
void get n(int); /] from N
void display(void); // own member

1

s
The member function display() can be defined as follows:

void P :: display(void)
{

COUt << IIrrI = " << m << Il\nll;
COUt << Iln = n << n << Il\nll;
cout << "m*n =" << m*n << "\n";

bs
The main() function which provides the user-interface may be written as follows:

main()
{
P p;
p.get m(10);
p.get _n(20);
p.display();
}

Program 8.4 shows the entire code illustrating how all the three classes are implemented
in multiple inheritance mode.

Inheritance: Extending Classes

#include <iostream>
using namespace std;

class M

{
protected:
int m;
public:
void get m(int);
b

class N

{
protected:
int n;
public:
void get_n(int);
}s

class P : public M, public N
{
public:
void display(void);
bs
void M :: get m(int x)

m = X3

void N :: get _n(int y)

n=y;

void P :: display(void)
{
{

Cout << llm = " << m << ll\nll;

Cout << Iln = n << n << Il\nll;

cout << "m*n = " << m*n << "\n";
int main()

{

0221

(Contd)

22260 Object-Oriented Programming with C++

P p;

p.get m(10);
p.get _n(20});
p.display(});

return 0;

PROGRAM 8.4

The output of Program 8.4 would be:

m = 10
n =20
m*n = 200

Ambiguity Resolution in Inheritance

Occasionally, we may face a problem in using the multiple inheritance, when a function
with the same name appears in more than one base class. Consider the following two classes.

class M
{
public:
void display(void)
{

cout << "Class M\n";
}s

class N

{
public:
void display(void)
{

}

cout << "Class N\n";
bs
Which display() function is used by the derived class when we inherit these two classes?
We can solve this problem by defining a named instance within the derived class, using the

class resolution operator with the function as shown below:

class P : public M, public N

Inheritance: Extending Classes ‘ 0223

public:
void display(void) // overrides display() of M and N

!
1

M :: display();
}

b
We can now use the derived class as follows:

int main()
{
P ps
p.displav();
1

Ambiguity may also arise in single inheritance applications. For instance, consider the
following situation:

class A
{
public:
void display()
{

}

cout << "A\n";

bs
class B : public A
{

public:
void display()
{
cout << "B\n";
1
I

N
Ve
[}

In this case, the function in the derived class overrides the inherited function and,
therefore, a simple call to display() by B type object will invoke function defined in B only.

However, we may invoke the function defined in A by using the scope resolution operator to
specify the class.

Example:

int main()
{

224 ¢ Object-Oriented Programming with C++

B b; // derived class object
b.display(); // invokes display() in B
b.A::display(); // invokes display() in A
b.B::display(); // invokes display() in B
return 0;

}

This will produce the following output:

B

hﬂ Hierarchical Inheritance

We have discussed so far how inheritance can be used to modify a class when it did not
satisfy the requirements of a particular problem on hand. Additional members are added
through inheritance to extend the capabilities of a class. Another interesting application of
inheritance is to use it as a support to the hierarchical design of a program. Many
programming problems can be cast into a hierarchy where certain features of one level are
shared by many others below that level.

As an example, Fig. 8.9 shows a hierarchical classification of students in a university.
Another example could be the classification of accounts in a commercial bank as shown in
Fig. 8.10. All the students have certain things in common and, similarly, all the accounts
possess certain common features.

Students

Arts Engineering Medical

Mech. Elec. Civil

Fig. 8.9 < Hierarchical classification of students &

Inheritance: Extending Classes 9225

l Account]

|
!
Y
Savings account ‘ : Current account

Fixed-deposit account

Short-term l Long-term

. Medium-term .

Fig. 8.10 < Classification of bank accounts g

In C++, such problems can be easily converted into class hierarchies. The base class will
include all the features that are common to the subclasses. A subclass can be constructed by
inheriting the properties of the base class. A subclass can serve as a base class for the lower
level classes and so on.

|8.8 Hybrid Inheritance

There could be situations
where we need to apply two
or more types of inheritance
to design a program. For student
instance, consider the case of
processing the student
results discussed in Sec. 8.5.

Assume that we have to give test . sports
weightage for sports before

finalising the results. The

weightage for sports is stored !

in a separate class called L result

sports. The new inheritance
relationship between the

various classes would be as Fig. 8.11 & Multilevel, multiple inheritance
shown in Fig. 8.11.

226 @ Object-Oriented Programming with C++
The sports class might look like:

class sports
{
protected:
float score;
public:
void get score(float);
void put_score(void);

}i

The result will have both the multilevel and multiple inheritances and its declaration
would be as follows:

ctass result : public test, public sports

.....

Where test itself is a derived class from student. That is

class test : public student

.....

.....

Program 8.5 illustrates the implementation of both multilevel and multiple inheritance.

HYBRID INHERTTANCE .
#include <iostream>
using namespace std;

class student

{

protected:
int roll_number;
public:
void get number(int a)
{

roll_number = a;
(Contd)

Inheritance: Extending Classes 0227

}
void put_number(void)
{
cout << "Roll No: " << roll_number << "\n";
}

|-

class test : public student

{

protected: -
float partl, part2;
public:
void get marks(float x, float y)
{
partl = x; part2 = y;
}
void put_marks(void)
{
cout << "Marks obtained: " << "\n"
<< "Partl = " << partl << "\n"
<< "part2 = " << part2 << "\n";
}
}s
class sports
{
protected:
float score;
public:
void get score(float s)
{
score = S;

}
void put_score(void)

{
}

cout << "Sports wt: " << score << "\n\n";
1

class result : public test, public spofts
{
float total;
public:
void display(void);

(Contd)

228 @ Object-Oriented Programming with C++

void result :: display(void)

{
total = partl + part2 + score;
put_number();
put_marks();
put_score();
cout << "Total Score: " << total << "\n";
} :
int main()
{
result student_1;
student_1.get number(1234);
student_ “1.get marks(27 5, 33.0);
student 1.get_score(6.0);
student_l display();
return 0;
}

PROGRAM 8.5

Here is the output of Program 8.5:

Roll No: 1234
Marks obtained:
Partl = 27.5
Part2 = 33
Sports wt: 6

Total Score: 66.5

|8.9 Virtual Base Classes

We have just discussed a situation which would require the use of both the multiple and
multilevel inheritance. Consider a situation where all the three kinds of inheritance, namely,
~ multilevel, multiple and hierarchical inheritance, are involved. This is illustrated in
Fig. 8.12. The ‘child’ has two direct base classes ‘parentl’ and ‘parent2’ which themselves
have a common base class ‘grandparent’. The 'child' inherits the traits of ‘grandparent’ via
two separate paths. It can also inherit directly as shown by the broken line. The ‘grandparent’
is sometimes referred to as indirect base class.

Inheritance: Extending Classes -0 229

Grandparent

Parent 1 Parent 2

|
i
i
I
|
i
|
1
i
|
i
|

Y
] Child }]

Fig. 8.12 <> Multipath inheritance -

Inheritance by the ‘child’ as shown in Fig. 8.12 might pose some problems. All the public
and protected members of ‘grandparent’ are inherited into ‘child’ twice, first via ‘parentl’
and again via ‘parent2’. This means, ‘child’ would have duplicate sets of the members inherited
from ‘grandparent’. This introduces ambiguity and should be avoided.

The duplication of inherited members due to these multiple paths can be avoided by
making the common base class (ancestor class) as virtual base class while declaring the
direct or intermediate base classes as shown below:

class A // grandparent

oo
class Bl : virtual public A // parentl

oo
class B2 : public virtual A // parent2

bs
class C : public Bl, public B2 // child

..... // only one copy of A
..... /] will be inherited

When a class is made a virtual base class, C++ takes necessary care to see that only one
copy of that class is inherited, regardless of how many inheritance paths exist between the
virtual base class and a derived class.

230e

rnote

Object-Oriented Programming with C++

For example, consider again the student
results processing system discussed in Sec. §.8.

The keywords virtual and public | Assume that the class sports derives the
may be used in either order. roll_number from the class student. Then, the

inheritance relationship will be as shown in

Fig. 8.13.

student

As viitual base class As virtual base class

%]
- °
[«]
p=y
w

result

Fig.8.13 < Virtual base class

- s

A program to implement the concept of virtual base class is illustrated in Program 8.6.

VIRTUAL BASE CLASS *

#include <iostream>
using namespace std;

class student
{
protected:
int roll_number;
public:

void get number(int a)

{

(Contd)

Inheritance: Extending Classes

roll_number = a;
}
void put_number(void)
{
cout << "Roll No: " << roll_number << "\n";
}
bs

class test : virtual public student

r

{
protected:
float partl, part2;
pubiic:
void get marks(float x, float y)

4
t

partl = x; part2 =y;
i
void put_marks{void)
{
cout << "Marks obtained: " << "\n"
<< "Partl = " << partl << "\n"

<o “Part? = Y << part2 << "\n"j

giass =norts » public virtual student

i

C
|

}t

protected:
float score;
public:
veia get score{float)

{

1y

score = §3

}

void put_score(void)

{

} cout << "Sports wt: " << score << "\n\n'";
'

Tass result - public test, public sportis
ficat total;
public: .
vaid display(void);

€231

(Contd)

2326 Object-Oriented Programming with C++

void result :: display(void)
total = partl + part2 + score;

put_number() ;
put _marks();
put_score();

cout << "Total Score: " << total << "\n";

}

int main{)

{
result student_1;
student_1.get number(678);
student_1.get marks(30.5, 25.5);
student_1.get_score(7.0);
student_1.display();

return 0;

}

PROGRAM 8.6

The output of Program 8.6 would be

Rol1 No: 678
Marks obtained:
Partl = 30.5
Part2 = 25.5
Sport wt: 7

Total Score: 63

|8.10 Abstract Classes

An abstract class is one that is not used to create objects. An abstract class is designed only
to act as a base class (to be inherited by other classes). It is a design concept in program
development and provides a base upon which other classes may be built. In the previous
example, the student class is an abstract class since it was not used to create any objects.

|8.11 Constructors in Derived Classes

As we know, the constructors play an important role in initializing objects. We did not use
them earlier in the derived classes for the sake of simplicity. One important thing to note

Inheritance: Extending Classes —0233

here is that, as long as no base class constructor takes any arguments, the derived class
need not have a constructor function. However, if any base class contains a constructor with
one or more arguments, then it is mandatory for the derived class to have a constructor and
pass the arguments to the base class constructors. Remember, while applying inheritance
we usually create objects using the derived class. Thus, it makes sense for the derived class
to pass arguments to the base class constructor. When both the derived and base classes
contain constructors, the base constructor is executed first and then the constructor in the-
derived class is executed.

In case of multiple inheritance, the base classes are constructed in the order in which
they appear in the declaration of the derived class. Similarly, in a multilevel inheritance,
the constructors will be executed in the order of inheritance.

Since the derived class takes the responsibility of supplying initial values to its base
classes, we supply the initial values that are required by all the classes together, when a
derived class object is declared. How are they passed to the base class constructors so that
they can do their job? C++ supports a special argument passing mechanism for such
situations.

The constructor of the derived class receives the entire list of values as its arguments and
passes them on to the base constructors in the order in which they are declared in the
derived class. The base constructors are called and executed before executing the statements
in the body of the derived constructor.

The general form of defining a derived constructor is:

Derived-constructor (Arglistl, Arglist2, ... ArglistN, Arglist(D)

basel(arglistl), *J
base2(arglist2), <__—_1

.....

baseN(arglistN), arguments for base(N)

Body of derived constructor

The header line of derived-constructor function contains two parts separatéd by a colon(:).
The first part provides the declaration of the arguments that are passed to the derived-
constructor and the second part lists the function calls to the base constructors.

basel(arglistl), base2(arglist2) ... are function calls to base constructors basel(), base2(),
... and therefore arglist1, arglist2, ... etc. represent the actual parameters that are passed
to the base constructors. Arglistl through ArglistN are the argument declarations for base
constructors basel through baseN. ArglistD provides the parameters that are necessary to
initialize the members of the derived class.

234 ¢ Object-Oﬁeﬁted Programming with C++

Example:

D(int al, int a2, float bl, float b2, int dl):
A(al, a2), /* call to constructor A */
B(bl, b2) /* call to constructor B */

{

}

d = dl; // executes its own body

A(al, a2) invokes the base constructor A() and B(b1, b2) invokes another base constructor
B(). The constructor D() supplies the values for these four arguments. In addition, it has
one argument of its own. The constructor D() has a total of five arguments. D() may be
invoked as follows:

.....

These values are assigned to various parameters by the constructor D() as follows:

5 — al
12 —> a2
2.5 — bl
7.54 — b2
30 — dl
The constructors for virtual base classes are invoked before any non-virtual base classes.
If there are multiple virtual base classes, they are invoked in the order in which they are
declared. Any non-virtual bases are then constructed before the derived class constructor is
executed. See Table 8.2.

Table 8.2 Execution of base class constructors

Method of inheritance ' Order of execution

Class B: public A A() ; base constructor
{ B() ; derived constructor

IR

class A : public B, public C B() ; base(first)

{ : C() ; base(second)
IR A() ; derived

class A : public B, virtual public C C() ; virtual base

{ B() ; ordinary base

} A() ; derived

Inheritance: Extending Classes 0235

Program 8.7 illustrates how constructors are implemented when the classes are inherited.

#include <iostream>
using namespace std;

class alpha

{
int x;
public:
alpha(int i)
{
X = i;
cout << "alpha initialized \n";
}
void show_x(void)
{ cout << "x = " << x << "\n"; }
1
class beta
{
float y;
public:
beta(float j)
{ -

y = ;s

cout << "beta initialized \n";
}
void show_y{void)
(Cout << uy = W << y << "\n"; }

}s

class gamma: public beta, public alpha
{
int m, n;
public:
gamma(int a, float b, int c, int d):
alpha(a), beta(b)
{
m= C;
n = d;
cout << "gamma initialized \n";

(Contd)

236 0— Object-Oriented Programming with C++

void show_mn(void)

cout << "m = W e m << u\nu
<< "ﬂ - W <<'n << u\nu;

}s
int main()

gamma g(5, 10.75, 20, 30);
cout << "\n";

g.show_x();

g.show_y();

g.show_mn();

return 0;

PROGRAM 8.7

The output of Program 8.7 would be:

beta initialized
alpha initialized
gamma initialized

5
10.75
20

30

D 3 < X
I

i

reodle

beta is initialized first, although it appears second in the derived constructor. This is
because it has been declared first in the derived class header line. Also, note that alpha(a)
and beta(b) are function calls. Therefore, the parameters should not include types.

C++ supports another method of initializing the class objects. This method uses what is
known as initialization list in the constructor function. This takes the following form:

constructor (arglist) : intialization-section

{
}

assignment-section

The assignment-section is nothing but the body of the constructor function and is used to
assign initial values to its data members. The part immediately following the colon is known

Inheritance: Extending Classes —9 237

as the initialization section. We can use this section to provide initial values to the base
constructors and also to initialize its own class members. This means that we can use either
of the sections to initialize the data members of the constructors class. The initialization
section basically contains a list of initializations separated by commas. This list is known as
initialization list. Consider a simple example:

class XYZ
{
int a;
int b;
public:
XYZ(int i, int j) : a(i), b(2 * j) { }
'

main()

{
)

XYZ x(2, 3);

This program will initialize a to 2 and b to 6. Note how the data members are initialized,
just by using the variable name followed by the initialization value enclosed in the parenthesis
(like a function call). Any of the parameters of the argument list may be used as the
initialization value and the items in the list may be in any order. For example, the constructor
XYZ may also be written as:

XYZ(int i, int j) : b(i), a(i +J) { }
In this case, a will be initialized to 5 and b to 2. Remember, the data members are initialized
in the order of declaration, independent of the order in the initialization list. This enables us
to have statements such as

XYZ(int i, int 3) : a(i), b(a * j) { }

Here a is initialized to 2 and b to 6. Remember, a which has been declared first is initialized
first and then its value is used to initialize b. However, the following will not work:

XYZ(int i, int j) : b(i), a{b * j) { }
because the value of b is not available to a which is to be initialized first.
The following statements are also valid:

XYZ(int i, int j) : a(i) {b = j;
XYZ(int 1, int j) { a =i

238e@ Object-Oriented Programming with C++

We can omit either section, if it is not needed. Program 8.8 illustrates the use of
initialization hiets 1n the base and derived constructors.

S '

ude wioctreans

mtox;
publyc:
aipha{int i)

X = 1;
cout << “\n alpha constructed",

vnid show_alpha(void)

i

Cout << M X’= L X << “\n";

class beta
- float p, q;
public:
beta{float a, float b): p(a), q(b+p)

’

{

U

cout << "\n beta constructed";

}
void show_beta(void)
i
cout << 0 p = M g P << n\nu;
Cout << " q = W << q << ”\n";
}
class gamma : public beta, public alpha
{
irt u,v;
public:

Tented i

Inheritance: Extending Classes 0239

gamma(int a, int b, float ¢):
alpha(a*2), beta(c,c), u(a)
{ v = b; cout << "\n gamma constructed"; }

void show_gamma(void)

{

cout << "y
cout << " v

}

" << u << ll\nll;
B << v &< ll\nll;

noH

}s

int main()

{
gamma g(2, 4, 2.5);

cout << "\n\n Display member values " << "\n\n";
g.show_alpha();
g.show_beta();

,g.show_gamma();

return 0;

}s

PROGRAM 8.8

The output of Program 8.8 would be:

beta constructed
alpha constructed
gamma constructed

Display member values

< £ 00T X
non o aon
BN S

rnote

The argument list of the derived constructor gamma contains only three parameters a,
b and ¢ which are used to initialize the five data members contained in all the three
classes.

2400 Object-Oriented Programming with C++

|8.12 Member Classes: Nesting of Classes

Inheritance is the mechanism of deriving certain properties of one class into another. We
have seen in detail how this is implemented using the concept of derived classes. C++ supports
yet another way of inheriting properties of one class into another. This approach takes a
view that an object can be a collection of many other objects. That is, a class can contain
objects of other classes as its members as shown below:

class alpha {....};

class beta {....};

class gamma

{
alpha a; // a is an object of alpha class
beta b; // b is an object of beta class

.....

All objects of gamma class will contain the objects a and b. This kind of relationship is
called containership or nesting. Creation of an object that contains another object is very
different than the creation of an independent object. An independent object is created by its
constructor when it is declared with arguments. On the other hand, a nested object is created
in two stages. First, the member objects are created using their respective constructors and
then the other 'ordinary' members are created. This means, constructors of all the member
objects should be called before its own constructor body is executed. This is accomplished
using an initialization list in the constructor of the nested class.

Example:

class gamma

.....

alpha a; // a is object of alpha
beta b; // b is object of beta
public:

gamma(arglist): a{arglistl), b(arglist2)
{
// constructor body

}s

arglist is the list of arguments that is to be supplied when a gamma object is defined. These
parameters are used for initializing the members of gamma. arglist1 is the argument list

Inheritance: Extending Classes ® 241
for the constructor of a and arglist2 is the argument list for the constructor of b. arglistl
and arglist2 may or may not use the arguments from arglist. Remember, a(arglistl) and
blarglist2) are function calls and therefore the arguments do not contain the data types.
They are simply variables or constants.

Example:

gamma(int x, int y, float z) : a(x), b(x,z)
{

}

Assignment section(for ordinary other members)

We can use as many member objects as are required in a class. For each member object
we add a constructor call in the initializer list. The constructors of the member objects are
called in the order in which they are declared in the nested class.

¢ The mechanism of deriving a new class from an old class is called inheritance. Inheritance
provides the concept of reusability. The C++ classes can be reused using inheritance.

SUMMARY

The derived class inherits some or all of the properties of the base class.

A derived class with only one base class is called single inheritance.

g§ 8¢

A class can inherit properties from more than one class which is known as multiple
inheritance.

A class can be derived from another derived class which is known as multilevel
inheritance.

When the properties of one class are inherited by more than one class, it is called
hierarchical inheritance.

< A private member of a class cannot be inherited either in public mode or in private
mode.

<> A protected member inherited in public mode becomes protected, whereas inherited in
private mode becomes private in the derived class.

¢ A public member inherited in public mode becomes public, whereas inherited in private
mode becomes private in the derived class.

& The friend functions and the member functions of a friend class can directly access the
private and protected data.

244 0— Object-Oriented Programming with C++

class Student {
char* name;
int rollNumber;
private:
Student () {
name = "AlanKay";
rol1Number = 1025;
}
void setNumber(int no) {
rol1Number = no;
}
int getRol1Number() {
return rollNumber;

s

class AnualTest: Student {
int markl, mark2;
public:
AnualTest(int ml, int m2)
:markl(ml), mark2(m2) {
}
int getRol1Number() {
return Student::getRol1Number();

}s

void main()
{
AnualTest test1(92, 85);
cout << testl.getRollNumber();

}
8.2 Identify the error in the following program.

#include <iostream.h>
class A
{
public:
A()
{

